Python: Spectrum Analyzer (plotting)
-
Moku:Go
Moku:Go Arbitrary Waveform Generator Moku:Go Data Logger Moku:Go Frequency Response Analyzer Moku:Go Logic Analyzer & Pattern Generator Moku:Go Oscilloscope & Voltmeter Moku:Go PID Controller Moku:Go Spectrum Analyzer Moku:Go Waveform Generator Moku:Go Power Supplies Moku:Go Digital Filter Box Moku:Go FIR Filter Builder Moku:Go Lock-in Amplifier
- Moku:Lab
- Moku:Pro
- Python API examples
Example Python script to implement the Spectrum Analyzer (plotting)
This example Python script shows how to setup Moku:Lab's Spectrum Analyzer instrument and how to plot the data in real time. This example is not compatible with Moku:Go or Moku:Pro.
# # pymoku example: Plotting Spectrum Analyzer # # This example demonstrates how you can configure the Spectrum Analyzer # instrument and plot its spectrum data in real-time. It also shows how # you can use its embedded signal generator to generate a sweep and single # frequency waveform on the output channels. # # (c) 2019 Liquid Instruments Pty. Ltd. # from pymoku import Moku from pymoku.instruments import SpectrumAnalyzer import logging import matplotlib.pyplot as plt from matplotlib.ticker import FuncFormatter logging.basicConfig(format='%(asctime)s:%(name)s:%(levelname)s::%(message)s') logging.getLogger('pymoku').setLevel(logging.INFO) # Connect to your Moku by its device name # Alternatively, use Moku.get_by_serial('#####') or Moku('192.168.###.###') m = Moku.get_by_name('Moku') # Use dBm scaling on the y-axis dbm = True try: i = m.deploy_or_connect(SpectrumAnalyzer) # Set spectrum analyzer configuration i.set_defaults() i.set_dbmscale(dbm) i.set_span(0, 70e6) i.set_rbw() # Auto-mode # Set up the embedded signal generator i.gen_sinewave(1, 1.0, 0, sweep=True) i.gen_sinewave(2, 0.5, 20e6) # Configure ADC inputs i.set_frontend(1, fiftyr=True) i.set_frontend(2, fiftyr=True) # Set up basic plot configurations line1, = plt.plot([]) line2, = plt.plot([]) plt.ion() plt.show() plt.grid(b=True) if(dbm): plt.ylim([-200, 100]) else: plt.ylim([-0.5, 1.0]) plt.autoscale(axis='x', tight=True) # Get an initial frame of data to set any frame-specific plot parameters frame = i.get_realtime_data() # Format the x-axis as a frequency scale ax = plt.gca() ax.xaxis.set_major_formatter(FuncFormatter(frame.get_xaxis_fmt)) ax.yaxis.set_major_formatter(FuncFormatter(frame.get_yaxis_fmt)) ax.fmt_xdata = frame.get_xcoord_fmt ax.fmt_ydata = frame.get_ycoord_fmt # Get and update the plot with new data while True: frame = i.get_realtime_data() plt.pause(0.001) # Set the frame data for each channel plot line1.set_ydata(frame.ch1) line2.set_ydata(frame.ch2) # Frequency axis shouldn't change, but to be sure line1.set_xdata(frame.frequency) line2.set_xdata(frame.frequency) # Ensure the frequency axis is a tight fit ax.relim() ax.autoscale_view() # Redraw the lines plt.draw() finally: m.close()