Example Python script to implement the IIR Filter Box (basic)
# pymoku example: Basic IIR Filter Box
#
# This example demonstrates how you can configure the IIR Filter instrument,
# configure real-time monitoring of the input and output signals.
#
# (c) 2019 Liquid Instruments Pty. Ltd.
#
from pymoku import Moku
from pymoku.instruments import IIRFilterBox
# This script provides a basic example showing how to load coefficients from an
# array into the IIRFilterBox.
# The following example array produces an 8th order Direct-form 1 Chebyshev
# type 2 IIR filter with a normalized stopband frequency of 0.2 pi rad/sample
# and a stopband attenuation of 40 dB. Output gain is set to 1.0. See the
# IIRFilterBox documentation for array dimension specifics.
filt_coeff = [
[
1.0
], [
1.0000000000, 0.6413900006, -1.0290561741,
0.6413900006, -1.6378425857, 0.8915664128
], [
1.0000000000, 0.5106751138, -0.7507394931,
0.5106751138, -1.4000444473, 0.6706551819
], [
1.0000000000, 0.3173108134, -0.3111365531,
0.3173108134, -1.0873085012, 0.4107935750
], [
1.0000000000, 0.1301131088, 0.1223154629,
0.1301131088, -0.7955572476, 0.1780989281
]
]
m = Moku.get_by_name('Moku')
try:
i = m.deploy_or_connect(IIRFilterBox)
i.set_frontend(1, fiftyr=True, atten=False, ac=False)
i.set_frontend(2, fiftyr=True, atten=False, ac=False)
# Both filters have the same coefficients, but the different sampling rates
# mean the resultant transfer functions will be different by a factor of
# 128 (the ratio of sampling rates)
i.set_filter(1, sample_rate='high', filter_coefficients=filt_coeff)
i.set_filter(2, sample_rate='low', filter_coefficients=filt_coeff)
# Offset filter channel 1 input by 0.1V
i.set_gains_offsets(1, input_offset=0.1)
# Filter channel 2 acts on sum of input 1 and 2
i.set_control_matrix(2, scale_in1=0.5, scale_in2=0.5)
# Set the monitor timebase to +-1msec
i.set_timebase(-1e-3, 1e-3)
# Set up monitoring of the input and output of the second filter channel.
i.set_monitor('a', 'in2')
i.set_monitor('b', 'out2')
# Capture and print one set of time-domain input and output points
d = i.get_realtime_data()
print(d.ch1, d.ch2)
finally:
m.close()